Allosteric effects of RuvA protein, ATP, and DNA on RuvB protein-mediated ATP hydrolysis.

نویسندگان

  • P E Marrione
  • M M Cox
چکیده

A detailed characterization of RuvB protein-mediated ATP hydrolysis in the presence of RuvA protein has provided (a) the steady-state kinetic parameters of ATP hydrolysis within a RuvAB complex and (b) several insights into the mechanism of ATP hydrolysis and its coupling to translocation on DNA. In general, the RuvA protein increases the kcat and decreases the Km for the RuvB ATPase activity. DNA has a much greater effect on the kinetics of ATP hydrolysis when RuvA is present, consistent with a role of RuvA in facilitating the interaction between RuvB and DNA. Mechanistic clues come from deviations from normal steady-state kinetic behavior. A previously described burst of ATP hydrolysis, corresponding to two ATPs per RuvB hexamer [Marrione & Cox (1995) Biochemistry 34, 9809-9818], is still observed in the presence of RuvA protein. This suggests a functional asymmetry in the RuvB hexamer. There is a gradual attenuation of ATP hydrolysis when RuvB protein, alone or in the presence of RuvA protein, hydrolyzes ATP at ATP concentrations below the Km. The attenuation is observed even though an ATP regeneration system is present. ATP hydrolysis simply halts after a limited number of turnovers. The attenuation is reversible, and the effects of RuvA protein, DNA, and additional ATP in reversing the effect provide evidence for a complex array of allosteric interactions operating within the RuvB hexameric helicase. We propose a model in which individual subunits in a RuvB hexamer are functionally paired, with the three pairs moving sequentially and cooperatively through a multistep ATP hydrolytic cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA.

The ruv operon is induced by treatments that damage DNA and is regulated by the LexA repressor. It encodes two proteins, RuvA and RuvB, that are involved in DNA repair, recombination in RecE and RecF pathways, and mutagenesis. RuvB protein was previously purified and has ATP-binding activity and weak ATPase activity. To study the biochemical properties of RuvA and its interaction with RuvB, we ...

متن کامل

Direct observation of DNA rotation during branch migration of Holliday junction DNA by Escherichia coli RuvA-RuvB protein complex.

The Escherichia coli RuvA-RuvB complex promotes branch migration of Holliday junction DNA, which is the central intermediate of homologous recombination. Like many DNA motor proteins, it is suggested that RuvA-RuvB promotes branch migration by driving helical rotation of the DNA. To clarify the RuvA-RuvB-mediated branch migration mechanism in more detail, we observed DNA rotation during Hollida...

متن کامل

RuvB protein-mediated ATP hydrolysis: functional asymmetry in the RuvB hexamer.

A survey of RuvB protein-mediated ATP hydrolysis yields the following observations. (1) The RuvB protein exhibits a DNA-independent ATPase activity with a turnover number (based on a RuvB monomer) approaching 6 min-1 and a Km of 154 microM. Single-stranded DNA and linear duplex DNA have small but significant effects on this activity. (2) At ATP concentrations near the Km, the ATPase activity is...

متن کامل

Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions.

The RuvA, RuvB, and RuvC proteins of Escherichia coli are required for the recombinational repair of ultraviolet light- or chemical-induced DNA damage. In vitro, RuvC protein interacts with Holliday junctions in DNA and promotes their resolution by endonucleolytic cleavage. In this paper, we investigate the interaction of RuvA and RuvB proteins with model Holliday junctions. Using band-shift as...

متن کامل

Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation.

The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 35 34  شماره 

صفحات  -

تاریخ انتشار 1996